Skip to main content

Artificial Neural Network Classification

ANN classification refers to the use of Artificial Neural Networks (ANNs) for solving classification problems. ANNs are computational models inspired by the biological neural networks in the human brain. They consist of interconnected nodes called artificial neurons or units, organized into layers.

In the context of classification, ANNs are trained to learn the patterns and relationships in a given dataset and make predictions about the class or category of new, unseen data points. The training process involves presenting the network with a set of labeled examples, where each example consists of input features and the corresponding target class. The network adjusts its internal parameters, known as weights and biases, based on the error between its predictions and the true labels.

The most common architecture for classification tasks is the feedforward neural network, where information flows in one direction from the input layer through one or more hidden layers to the output layer. Each neuron in a layer receives inputs from the previous layer, performs a computation using its weights and biases, and passes the result to the next layer. The output layer typically represents the predicted class probabilities or directly predicts the class label.

Method: POST Authorization: API Key
https://engine.raccoon-ai.io/api/v1/ml/classification/ann

Authorization

TypeKeyValue
API KeyX-Api-Keyrae_######

Request Body

SectionKeyData TypeRequiredDescription
traindatajsontrueData that use to train the model
featureslisttrueInput features (X)
targetslisttrueOutput targets (y)
configjsonfalseTrain configurations
predictdatajsontrueData that need to predicted by the trained model
configjsonfalsePredict configurations

Types

{
"train" : {
"data" : <json_data>,
"features": <list>,
"targets" : <list>,
"config" : {
"std_scale": <boolean>,
"encoder" : <"label" | "drop">,
"val_size" : <float>
}
},
"predict": {
"data": <json_data>,
"config": {
"include_inputs": <boolean>,
"round": <int>
}
}
}

Sample

{
"train": {
"data": {
"R&D Spend": {
"0": 165349.2,
"1": 162597.7,
"2": 153441.51,
"3": 144372.41,
"4": 142107.34,
"5": 131876.9,
"6": 134615.46,
"7": 130298.13,
"8": 120542.52,
"9": 123334.88
},
"Administration": {
"0": 136897.8,
"1": 151377.59,
"2": 101145.55,
"3": 118671.85,
"4": 91391.77,
"5": 99814.71,
"6": 147198.87,
"7": 145530.06,
"8": 148718.95,
"9": 108679.17
},
"Marketing Spend": {
"0": 471784.1,
"1": 443898.53,
"2": 407934.54,
"3": 383199.62,
"4": 366168.42,
"5": 362861.36,
"6": 127716.82,
"7": 323876.68,
"8": 311613.29,
"9": 304981.62
},
"State": {
"0": "New York",
"1": "California",
"2": "Florida",
"3": "New York",
"4": "Florida",
"5": "New York",
"6": "California",
"7": "Florida",
"8": "New York",
"9": "California"
},
"Profit": {
"0": 192261.83,
"1": 191792.06,
"2": 191050.39,
"3": 182901.99,
"4": 166187.94,
"5": 156991.12,
"6": 156122.51,
"7": 155752.6,
"8": 152211.77,
"9": 149759.96
}
},
"features": ["R&D Spend", "Administration", "Marketing Spend", "Profit"],
"targets": ["State"],
"config": {
"std_scale": true,
"encoder": "label",
"hidden_units": [100, 100],
"max_iter": 1000
}
},
"predict": {
"data": {
"R&D Spend": {
"0": 165349.2,
"1": 162597.7
},
"Administration": {
"0": 136897.8,
"1": 151377.59
},
"Marketing Spend": {
"0": 471784.1,
"1": 443898.53
},
"Profit": {
"0": 471784.1,
"1": 443898.53
}
},
"config": {
"include_inputs": true,
"round": 2
}
}
}

Reponse Body

KeyData TypeDescription
successbooleanIndicate the success of the request
msgstringMessage indicators
errorstringError information, only set if success is false
resultjsonResult, only set if success is true
scorejsonAccuracy score of the training and testing phases, only set if success is true
generated_tsfloatGenerated timestamp

Types

{
"success": <boolean>,
"msg": <string>,
"error": <string>,
"result": <json>,
"score": {
"train": <float>,
"test": <float>
},
"generated_ts": <timestamp>
}

Sample

{
"success": true,
"msg": "Model trained and predicted successfully",
"error": null,
"result": {
"R&D Spend": {
"0": 165349.2,
"1": 162597.7
},
"Administration": {
"0": 136897.8,
"1": 151377.59
},
"Marketing Spend": {
"0": 471784.1,
"1": 443898.53
},
"Profit": {
"0": 190209.72,
"1": 186863.18
},
"State": {
"0": "New York",
"1": "California"
}
},
"score": {
"train": 0.942446542689397,
"test": 0.9649618042060305
},
"saved_in": null,
"generated_ts": 1685439220.425382
}